Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.442
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(5): e35410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728112

RESUMO

The dissipative particle dynamics (DPD) simulation was used to study the morphologies and structures of the paclitaxel-loaded PLA-b-PEO-b-PLA polymeric micelle. We focused on the influences of PLA block length, PLA-b-PEO-b-PLA copolymer concentration, paclitaxel drug content on morphologies and structures of the micelle. Our simulations show that: (i) with the PLA block length increase, the self-assemble structure of PLA-b-PEO-b-PLA copolymers with paclitaxel vary between onion-like structure (core-middle layer-shell) to spherical core-shell structure. The PEO shell thins and the size of the PLA core increases. The onionlike structures are comprised of the PEO hydrophilic core, the PLA hydrophobic middle layer, and the PEO hydrophilic shell, the distribution of the paclitaxel drug predominantly occurs within the hydrophobic intermediate layer; (ii) The system forms a spherical core-shell structure when a small amount of the drug is added, and within a certain range, the size of the spherical structure increases as the drug amount increases. When the drug contents (volume fraction) cdrug = 10%, it can be observed that the PLA4-b-PEO19-b-PLA4 spherical structures connect to form rod-shaped structures. With the length of PLA block NPLA = 8, as the paclitaxel drug concentrations cdrug = 4%, PEO has been insufficient to completely encapsulate the PLA and paclitaxel drug beads. To enhance drug loading capacity while maintaining stability of the system in aqueous solution, the optimal composition for loading paclitaxel is PLA4-b-PEO19-b-PLA4; the drug content is not higher than 4%; (iii) The paclitaxel-loaded PLA4-b-PEO19-b-PLA4 micelle undergo the transition from onionlike (core-middle layer-shell) to spherical (core-shell) to rod-shaped and lamellar structure as the PLA4-b-PEO19-b-PLA4 copolymer concentration increases from ccp = 10% to 40%.


Assuntos
Micelas , Paclitaxel , Poliésteres , Polietilenoglicóis , Paclitaxel/química , Paclitaxel/farmacocinética , Polietilenoglicóis/química , Poliésteres/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Portadores de Fármacos/química
2.
J Colloid Interface Sci ; 668: 678-690, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710124

RESUMO

Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.


Assuntos
Antibacterianos , Quitosana , Ácido Cítrico , Escherichia coli , Géis , Staphylococcus aureus , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Géis/química , Quitosana/química , Ácido Cítrico/química , Biomassa , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Ácido Fítico/química , Pectinas/química , Reagentes de Ligações Cruzadas/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Tamanho da Partícula , Temperatura
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731809

RESUMO

Polysaccharide-based systems have very good emulsifying and stabilizing properties, and starch plays a leading role. Their modifications should add new quality features to the product to such an extent that preserves the structure-forming properties of native starch. The aim of this manuscript was to examine the physicochemical characteristics of the combinations of starch with phospholipids or lysozymes and determine the effect of starch modification (surface hydrophobization or biological additives) and preparation temperature (before and after gelatinization). Changes in electrokinetic potential (zeta), effective diameter, and size distribution as a function of time were analyzed using the dynamic light scattering and microelectrophoresis techniques. The wettability of starch-coated glass plates before and after modification was checked by the advancing and receding contact angle measurements, as well as the angle hysteresis, using the settle drop method as a complement to profilometry and FTIR. It can be generalized that starch dispersions are more stable than analogous n-alkane/starch emulsions at room and physiological temperatures. On the other hand, the contact angle hysteresis values usually decrease with temperature increase, pointing to a more homogeneous surface, and the hydrophobization effect decreases vs. the thickness of the substrate. Surface hydrophobization of starch carried out using an n-alkane film does not change its bulk properties and leads to improvement of its mechanical and functional properties. The obtained specific starch-based hybrid systems, characterized in detail by switchable wettability, give the possibility to determine the energetic state of the starch surface and understand the strength and specificity of interactions with substances of different polarities in biological processes and their applicability for multidirectional use.


Assuntos
Polissacarídeos , Amido , Molhabilidade , Amido/química , Polissacarídeos/química , Temperatura , Muramidase/química , Interações Hidrofóbicas e Hidrofílicas , Fosfolipídeos/química , Fenômenos Químicos , Emulsões/química
4.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731878

RESUMO

ß-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in ß-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of ß-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of ß-sheets, which serve as nucleation points for further fibril growth.


Assuntos
Lactoglobulinas , Simulação de Dinâmica Molecular , Agregados Proteicos , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Ligação de Hidrogênio , Amiloide/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
5.
Food Res Int ; 186: 114340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729695

RESUMO

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Assuntos
Etilenos , Embalagem de Alimentos , Frutas , Poliuretanos , Óleo de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalagem de Alimentos/métodos , Porosidade , Frutas/química , Óleo de Soja/química , Zeína/química , Adsorção , Polímeros/química , Solanum lycopersicum/química , Interações Hidrofóbicas e Hidrofílicas
6.
Food Res Int ; 186: 114365, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729700

RESUMO

This study aimed to investigate the interaction, structure, antioxidant, and emulsification properties of quinoa protein hydrolysate (QPH) complexes formed with (-)-epigallocatechin gallate (EGCG) at pH 3.0 and 7.0. Additionally, the effect of pH conditions and EGCG complexation on protein hydrolysate-lipid co-oxidation in QPH emulsions was explored. The results indicated that QPH primarily interacted with EGCG through hydrophobic interactions and hydrogen bonds. This interaction led to alterations in the secondary structure of QPH, as well as a decrease in surface hydrophobicity and free SH content. Notably, the binding affinity between QPH and EGCG was observed to be higher at pH 7.0 compared to pH 3.0. Consequently, QPH-EGCG complexes exhibited more significant enhancement in antioxidant and emulsification properties at pH 7.0 than pH 3.0. The pH level also influenced the droplet size, ζ-potential, and interfacial composition of emulsions formed by QPH and QPH-EGCG complexes. Compared to QPH stabilized emulsions, QPH-EGCG stabilized emulsions were more capable of mitigating destabilization during storage and displayed fewer lipid oxidation products, carbonyl generation, and sulfhydryl groups and fluorescence loss, which implied better oxidative stability of the emulsions. Furthermore, the QPH-EGCG complexes formed at pH 7.0 exhibited better inhibition of protein hydrolysate-lipid co-oxidation. Overall, these findings provide valuable insights into the potential application of QPH and its complexes with EGCG in food processing systems.


Assuntos
Antioxidantes , Catequina , Chenopodium quinoa , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Hidrolisados de Proteína , Chenopodium quinoa/química , Concentração de Íons de Hidrogênio , Emulsões/química , Hidrolisados de Proteína/química , Catequina/química , Catequina/análogos & derivados , Antioxidantes/química , Ligação de Hidrogênio , Proteínas de Plantas/química , Lipídeos/química
7.
Food Res Int ; 186: 114410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729706

RESUMO

Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.


Assuntos
Proteínas de Peixes , Armazenamento de Alimentos , Oxirredução , Perciformes , Animais , Perciformes/metabolismo , Proteínas de Peixes/química , Peroxidação de Lipídeos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Conformação Proteica , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Alimentos Marinhos/análise
8.
ACS Infect Dis ; 10(5): 1839-1855, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725407

RESUMO

Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Bactérias Gram-Negativas/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Hidrocarbonetos/química , Hidrocarbonetos/farmacologia , Hemólise/efeitos dos fármacos , Conformação Proteica em alfa-Hélice
9.
Protein Sci ; 33(6): e5003, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38747380

RESUMO

Extremophile organisms have adapted to extreme physicochemical conditions. Halophilic organisms, in particular, survive at very high salt concentrations. To achieve this, they have engineered the surface of their proteins to increase the number of short, polar and acidic amino acids, while decreasing large, hydrophobic and basic residues. While these adaptations initially decrease protein stability in the absence of salt, they grant halophilic proteins remarkable stability in environments with extremely high salt concentrations, where non-adapted proteins unfold and aggregate. The molecular mechanisms by which halophilic proteins achieve this, however, are not yet clear. Here, we test the hypothesis that the halophilic amino acid composition destabilizes the surface of the protein, but in exchange improves the stability in the presence of salts. To do that, we have measured the folding thermodynamics of various protein variants with different degrees of halophilicity in the absence and presence of different salts, and at different pH values to tune the ionization state of the acidic amino acids. Our results show that halophilic amino acids decrease the stability of halophilic proteins under mesophilic conditions, but in exchange improve salt-induced stabilization and solubility. We also find that, in contrast to traditional assumptions, contributions arising from hydrophobic effect and preferential ion exclusion are more relevant for haloadaptation than electrostatics. Overall, our findings suggest a trade-off between folding thermodynamics and halophilic adaptation to optimize proteins for hypersaline environments.


Assuntos
Estabilidade Proteica , Eletricidade Estática , Termodinâmica , Dobramento de Proteína , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
10.
Water Sci Technol ; 89(9): 2512-2522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747964

RESUMO

This manuscript presents a novel approach for developing an environmentally friendly and effective oil-water separation membrane. Achieving a superhydrophobic (SH) coating on textile fabric (TF) involved a two-step process. Initially, the surface roughness was enhanced by applying bio-zinc oxide (ZnO) nanoparticles obtained from Thymbra spicata L. Subsequently, the roughened surface was modified with stearic acid, a material known for its low surface energy. The bio-ZnO nanoparticles exhibit a circular morphology with an average size of 21 nm. The coating demonstrated remarkable mechanical stability, maintaining SH properties even after an abrasion length of 300 mm. Chemical stability studies revealed that the prepared membrane retained SH properties within a pH range of 5-11, which ensures robust performance. Absorption capacity measurements showcased different capacities for n-hexane (Hex), corn oil (C.O), and silicone oil (S.O), with consistent performance over 10 absorption-desorption cycles. High oil-water separation efficiencies were achieved for hexane, C.O, and S.O, emphasizing the coating's versatility. Flux rate measurements demonstrated that oil passed through the membrane efficiently, with the highest flux observed for Hex. The prepared SH membrane has superior mechanical and chemical stability and high separation efficiencies, which positions it as a promising candidate for diverse industrial applications.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óxido de Zinco , Óxido de Zinco/química , Água/química , Óleos/química
11.
Soft Matter ; 20(19): 4007-4014, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690757

RESUMO

Biology exploits biomacromolecular phase separation to form condensates, known as membraneless organelles. Despite significant advancements in deciphering sequence determinants for phase separation, modulating these features in vivo remains challenging. A promising approach inspired by biology is to use post-translational modifications (PTMs)-to modulate the amino acid physicochemistry instead of altering protein sequences-to control the formation and characteristics of condensates. However, despite the identification of more than 300 types of PTMs, the detailed understanding of how they influence the formation and material properties of protein condensates remains incomplete. In this study, we investigated how modification with myristoyl lipid alters the formation and characteristics of the resilin-like polypeptide (RLP) condensates, a prototypical disordered protein with upper critical solution temperature (UCST) phase behaviour. Using turbidimetry, dynamic light scattering, confocal and electron microscopy, we demonstrated that lipidation-in synergy with the sequence of the lipidation site-significantly influences RLPs' thermodynamic propensity for phase separation and their condensate properties. Molecular simulations suggested these effects result from an expanded hydrophobic region created by the interaction between the lipid and lipidation site rather than changes in peptide rigidity. These findings emphasize the role of "sequence context" in modifying the properties of PTMs, suggesting that variations in lipidation sequences could be strategically used to fine-tune the effect of these motifs. Our study advances understanding of lipidation's impact on UCST phase behaviour, relevant to proteins critical in biological processes and diseases, and opens avenues for designing lipidated resilins for biomedical applications like heat-mediated drug elution.


Assuntos
Peptídeos , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Transição de Fase , Sequência de Aminoácidos , Processamento de Proteína Pós-Traducional
12.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708183

RESUMO

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Assuntos
Antivirais , Lignanas , Proteínas Recombinantes , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/farmacocinética , Proteínas Recombinantes/química , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Animais , Nanopartículas/química
13.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709371

RESUMO

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Assuntos
Corantes Fluorescentes , Ouro , Nanopartículas Metálicas , Potássio , Soroalbumina Bovina , Valinomicina , Ouro/química , Valinomicina/química , Potássio/análise , Potássio/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Animais , Interações Hidrofóbicas e Hidrofílicas , Bovinos
14.
J Sep Sci ; 47(9-10): e2300949, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726739

RESUMO

Hydrophilic interaction liquid chromatography (HILIC) has been widely applied to challenging analysis in biomedical and pharmaceutical fields, bridging the gap between normal-phase high-performance liquid chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). This paper comprehensively explores the retention mechanisms of amitriptyline and its impurities A, B, C, D, F, and G on amide, amino, diol, and silica columns. Dual HILIC/RP-HPLC retention mechanisms were developed, and transitional points between HILIC and RP-HPLC mechanisms were calculated on amide, diol, and silica columns. Adsorption and partition contributions to overall retention mechanisms were evaluated using Python software in HILIC and RP-HPLC regions. The cation exchange mechanism dominates overall retention for ionized analytes in the silica column (R2 > 0.995), whereas the retention of ionized analytes increases with pH. Impacts of acetonitrile content, buffer ionic strength, and pH, along with their interactions on the retention of ionized analytes in the silica column, were determined using the chemometric approach. Acetonitrile content showed the most significant impact on the retention mechanisms. These findings highlight that a detailed investigation into retention mechanisms provides notable insights into factors influencing analyte retention and separation, promising valuable guidance for future analysis.


Assuntos
Amidas , Amitriptilina , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício , Dióxido de Silício/química , Amitriptilina/análise , Amitriptilina/química , Amidas/química , Amidas/análise , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Cromatografia Líquida/métodos , Estrutura Molecular
15.
Nat Commun ; 15(1): 3797, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714656

RESUMO

Nucleoporins rich in phenylalanine/glycine (FG) residues form the permeability barrier within the nuclear pore complex and are implicated in several pathological cellular processes, including oncogenic fusion condensates. The self-association of FG-repeat proteins and interactions between FG-repeats play a critical role in these activities by forming hydrogel-like structures. Here we show that mutation of specific FG repeats of Nup98 can strongly decrease the protein's self-association capabilities. We further present a cryo-electron microscopy structure of a Nup98 peptide fibril with higher stability per residue compared with previous Nup98 fibril structures. The high-resolution structure reveals zipper-like hydrophobic patches which contain a GLFG motif and are less compatible for binding to nuclear transport receptors. The identified distinct molecular properties of different regions of the nucleoporin may contribute to spatial variations in the self-association of FG-repeats, potentially influencing transport processes through the nuclear pore.


Assuntos
Microscopia Crioeletrônica , Complexo de Proteínas Formadoras de Poros Nucleares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Humanos , Mutação , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Poro Nuclear/química , Glicina/química , Glicina/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Sequências Repetitivas de Aminoácidos , Ligação Proteica , Modelos Moleculares , Interações Hidrofóbicas e Hidrofílicas
16.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690887

RESUMO

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Assuntos
Antibacterianos , Daptomicina , Simulação de Dinâmica Molecular , Fosfolipídeos , Daptomicina/farmacologia , Daptomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fosfatidilgliceróis/química , Interações Hidrofóbicas e Hidrofílicas , Cardiolipinas/química , Cardiolipinas/metabolismo
17.
J Sep Sci ; 47(9-10): e2300668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699940

RESUMO

Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Humanos , Carboidratos/química , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas
18.
J Toxicol Sci ; 49(5): 219-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692909

RESUMO

Quantitative structure permeation relationship (QSPR) models have gained prominence in recent years owing to their capacity to elucidate the influence of physicochemical properties on the dermal absorption of chemicals. These models facilitate the prediction of permeation coefficient (Kp) values, indicating the skin permeability of a chemical under infinite dose conditions. Conversely, obtaining dermal absorption rates (DAs) under finite dose conditions, which are crucial for skin product safety evaluation, remains a challenge when relying solely on Kp predictions from QSPR models. One proposed resolution involves using Kroes' methodology, categorizing DAs based on Kp values; however, refinement becomes necessary owing to discreteness in the obtained values. We previously developed a mathematical model using Kp values obtained from in vitro dermal absorption tests to predict DAs. The present study introduces a new methodology, Integrating Mathematical Approaches (IMAS), which combines QSPR models and our mathematical model to predict DAs for risk assessments without conducting in vitro dermal absorption tests. Regarding 40 chemicals (76.1 ≤ MW ≤ 220; -1.4 ≤ Log Ko/w ≤ 3.1), IMAS showed that 65.0% (26/40) predictions of DA values were accurate to within twofold of the observed values in finite dose experiments. Compared to Kroes' methodology, IMAS notably mitigated overestimation, particularly for hydrophilic chemicals with water solubility exceeding 57.0 mg/cm3. These findings highlight the value of IMAS as a tool for skin product risk assessments, particularly for hydrophilic compounds.


Assuntos
Permeabilidade , Relação Quantitativa Estrutura-Atividade , Absorção Cutânea , Medição de Risco , Pele/metabolismo , Humanos , Modelos Teóricos , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Animais , Modelos Biológicos
19.
Luminescence ; 39(5): e4753, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38698700

RESUMO

A simple and environmentally friendly method was developed for smart and efficient waterborne polyurethane (PUR) paint. Sugarcane bagasse was recycled into reduced graphene oxide nanosheets (rGONSs). Both lanthanide-doped aluminate nanoparticles (LAN; photoluminescent agent, 7-9 nm) and rGONSs (reinforcement agent) were integrated into a waterborne polyurethane to produce a novel photoluminescent, hydrophobic, and anticorrosive nanocomposite coating. Using ferrocene-based oxidation under masked circumstances, graphene oxide nanosheets were produced from sugarcane bagasse. The oxidized semicarbazide (SCB) nanostructures were integrated into polyurethane coatings as a drying, anticorrosion, and crosslinking agent. Polyurethane coatings with varying amounts of phosphor pigment were prepared and subsequently applied to mild steel. The produced paints (LAN/rGONSs@PUR) were tested for their hydrophobicity, hardness, and scratch resistance. Commission Internationale de l'éclairage (CIE) Laboratory parameters and photoluminescence analysis established the opacity and colourimetric properties of the nanocomposite coatings. When excited at 365 nm, the luminescent transparent paints emitted a strong greenish light at 517 nm. The anticorrosion characteristics of the coated steel were investigated. The phosphor-containing (11% w/w) polyurethane coatings displayed the most pronounced anticorrosion capability and long-persistent luminosity. The prepared waterborne polyurethane paints were very photostable and durable.


Assuntos
Grafite , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos , Pintura , Poliuretanos , Poliuretanos/química , Grafite/química , Nanocompostos/química , Luminescência , Corrosão , Química Verde
20.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732243

RESUMO

This study presents the functionalization of silk fabric with SWCNT ink. The first step was the formation of a polydopamine (PDA) thin coating on the silk fabric to allow for effective bonding of SWCNTs. PDA formation was carried out directly on the fabric by means of polymerization of dopamine in alkali conditions. The Silk/PDA fabric was functionalized with SWCNT ink of different SWCNT concentrations by using the dip-coating method. IR and Raman analyses show that the dominant ß-sheet structure of silk fibroin after the functionalization process remains unchanged. The heat resistance is even slightly improved. The hydrophobic silk fabric becomes hydrophilic after functionalization due to the influence of PDA and the surfactant in SWCNT ink. The ink significantly changes the electrical properties of the silk fabric, from insulating to conductive. The volume resistance changes by nine orders of magnitude, from 2.4 × 1012 Ω to 2.3 × 103 Ω for 0.12 wt.% of SWCNTs. The surface resistance changes by seven orders of magnitude, from 2.1 × 1012 Ω to 2.4 × 105 Ω for 0.17 wt.% of SWCNTs. The volume and surface resistance thresholds are determined to be about 0.05 wt.% and 0.06 wt.%, respectively. The low value of the percolation threshold indicates efficient functionalization, with high-quality ink facilitating the formation of percolation paths through SWCNTs and the influence of the PDA linker.


Assuntos
Condutividade Elétrica , Indóis , Tinta , Nanotubos de Carbono , Polímeros , Seda , Indóis/química , Polímeros/química , Seda/química , Nanotubos de Carbono/química , Têxteis , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...